首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3061篇
  免费   295篇
  2021年   34篇
  2020年   13篇
  2019年   26篇
  2018年   35篇
  2017年   29篇
  2016年   53篇
  2015年   90篇
  2014年   140篇
  2013年   169篇
  2012年   206篇
  2011年   197篇
  2010年   129篇
  2009年   123篇
  2008年   161篇
  2007年   170篇
  2006年   182篇
  2005年   176篇
  2004年   167篇
  2003年   143篇
  2002年   166篇
  2001年   35篇
  2000年   36篇
  1999年   57篇
  1998年   57篇
  1997年   48篇
  1996年   44篇
  1995年   43篇
  1994年   33篇
  1993年   37篇
  1992年   47篇
  1991年   41篇
  1990年   40篇
  1989年   32篇
  1988年   37篇
  1987年   17篇
  1986年   16篇
  1985年   30篇
  1984年   33篇
  1983年   21篇
  1982年   33篇
  1981年   26篇
  1980年   24篇
  1979年   16篇
  1978年   17篇
  1977年   16篇
  1976年   11篇
  1975年   9篇
  1974年   10篇
  1973年   12篇
  1972年   10篇
排序方式: 共有3356条查询结果,搜索用时 15 毫秒
61.
62.
This study presents direct experimental evidence for assessing the electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. Immature and mature bovine cartilage samples were tested in unconfined compression and their depth-dependent equilibrium compressive modulus was determined using strain measurements with digital image correlation analysis. The electrostatic contribution was assessed by testing samples in isotonic and hypertonic saline; the combined contribution was assessed by testing untreated and proteoglycan-depleted samples.Though it is well recognized that proteoglycans contribute significantly to the compressive stiffness of cartilage, results demonstrate that the combined electrostatic and non-electrostatic contributions may add up to more than 98% of the modulus, a magnitude not previously appreciated. Of this contribution, about two thirds arises from electrostatic effects. The compressive modulus of the proteoglycan-depleted cartilage matrix may be as low as 3 kPa, representing less than 2% of the normal tissue modulus; experimental evidence also confirms that the collagen matrix in digested cartilage may buckle under compressive strains, resulting in crimping patterns. Thus, it is reasonable to model the collagen as a fibrillar matrix that can sustain only tension. This study also demonstrates that residual stresses in cartilage do not arise exclusively from proteoglycans, since cartilage remains curled relative to its in situ geometry even after proteoglycan depletion. These increased insights on the structure–function relationships of cartilage can lead to improved constitutive models and a better understanding of the response of cartilage to physiological loading conditions.  相似文献   
63.
The potential for transported soil to harbour and spread nonindigenous species (NIS) is widely recognised and many National Plant Protection Organisations (NPPOs) restrict or prohibit its movement. However, surprisingly few studies have surveyed soil while it is in transit to provide direct support for its role in accidental introductions of NIS. Moreover, there are few border interception records for soil organisms because they are neither easily detected nor routinely isolated and identified. Better data would improve evaluations of risks from soil transported via different pathways, enable targeting of management resources at the riskiest pathways, and support development of new risk management methods. We surveyed organisms present in soil that had been removed from footwear being carried in the baggage of international aircraft passengers arriving in New Zealand and recorded high incidences, counts and diversities of viable bacteria, fungi, nematodes and seeds, as well as several live arthropods. These included taxa that have not been recorded in New Zealand and were therefore almost certainly nonindigenous to this country. In each gram of soil, there was an estimated 52–84% incidence of genera that contain species regulated by New Zealand’s NPPO, which suggests many were potentially harmful. Variation in the incidences and counts of soil organisms with sample weight, footwear type and season at the port of departure indicated it may be possible to develop methods for targeting management resources at the riskiest footwear. Comparisons with previously published data supported the hypothesis that survival of soil organisms is greater when they are transported in protected (e.g. in luggage) rather than unprotected environments (e.g. external surfaces of sea containers); this offers opportunities to develop methods for targeting management resources at the most hazardous soil pathways.  相似文献   
64.
65.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   
66.
We examined the hypothesis that genotypic variation among populations of commonly co‐occurring phreatophytic trees (Populus fremontii, Salix gooddingii) and the shrub (Salix exigua) regulates aboveground net primary productivity (ANPP) at a hot site at the edge of the species’ distribution. We used a provenance trial in which replicated genotypes from populations varying in mean annual temperature were transplanted to a common garden adjacent to the Lower Colorado River in southeastern California. The garden environment represented an extreme maximum temperature for the study species. Four major findings emerged: (1) Genotypic variation in ANPP was significant for all species with broad‐sense heritability (H2) across populations of 0.11, 0.13, and 0.10 for P. fremontii, S. gooddingii, and S. exigua, respectively, and within‐population H2 ranging from 0.00 to 0.25, 0.00 to 0.44, and 0.02 to 0.21, respectively. (2) Population ANPP decreased linearly as mean annual maximum temperature (MAMT) transfer distance increased for both P. fremontii (r2 = 0.64) and S. gooddingii (r2 = 0.37), whereas it did not change for S. exigua; (3) Populations with similar MAMT to that of the common garden were 1.5 and 1.2 times more productive than populations with 5.0 °C MAMT transfer distances for P. fremontii and S. gooddingii, respectively; and (4) Variation in regression slopes among species for the relationship between ANPP and MAMT indicate species‐specific responses to temperature. As these plant species characterize a threatened habitat type and support a diverse community that includes endangered species, ecosystem restoration programs should consider using both local genotypes and productive genotypes from warmer environments to maximize productivity of riparian ecosystems in the face of global climate change.  相似文献   
67.
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.  相似文献   
68.
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1−/− mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.  相似文献   
69.
70.
The noradrenaline (NA) and serotonin reuptake inhibitor, sibutramine, gives effective weight loss, but full efficacy cannot be attained at approved doses due to cardiovascular side effects. We assessed in rats the contributions of NA and serotonin transporters to sibutramine's hypophagic and cardiovascular effects, and whether selective 5‐hydroxytryptamine (5‐HT1A) receptor activation could counteract the latter without affecting the former. Food intake was assessed in freely feeding rats and cardiovascular parameters in conscious telemetered rats. Ex vivo radioligand binding was used to estimate brain monoamine transporter occupancy. Sibutramine (1–10 mg/kg p.o.) dose‐dependently reduced food intake; however, 10 mg/kg p.o. markedly elevated blood pressure and heart rate. Sibutramine gave greater occupancy of NA than serotonin reuptake sites. Coadministration of the selective 5‐HT1A agonist F‐11440 (2.5 mg/kg p.o.) attenuated sibutramine‐induced hypertension and tachycardia without altering its food intake effects. The selective NA reuptake inhibitors, nisoxetine or reboxetine, did not alter food intake alone, but each reduced food intake when combined with F‐11440. These results suggest that sibutramine‐induced hypophagic and cardiovascular effects are largely due to increased brain synaptic NA via NA reuptake inhibition, and that 5‐HT1A activation can counter the undesirable cardiovascular effects resulting from increased sympathetic activity. Selective NA reuptake inhibitors did not reduce food intake alone but did when combined with 5‐HT1A activation. Hence increased synaptic serotonin, via serotonin reuptake inhibition or 5‐HT1A activation, together with increased NA, would appear to produce hypophagia. Thus weight loss with minimal cardiovascular risk could be achieved by 5‐HT1A activation combined with NA transporter blockade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号